quadrature sum - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

quadrature sum - перевод на русский

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}
Найдено результатов: 395
quadrature sum      

математика

квадратурная сумма

zero-sum game         
  • Zero-sum three-person game
MATHEMATICAL REPRESENTATION OF A SITUATION IN WHICH EACH PARTICIPANT'S GAIN OR LOSS OF UTILITY IS EXACTLY BALANCED BY THE LOSSES OR GAINS OF THE UTILITY OF THE OTHER PARTICIPANTS
Non-zero-sum; Non-zero-sum games; Zero sum game; Zero sum gain; Zero-sum games; Non-zero-sum game; Zero Sum Game; Non-zero sum; Non-zero sum game; Constant sum game; Constant sum; Constant-sum; Fixed sum game; Conflict game; Non zero sum; Negative-sum game; Zero Sum; Zero-sum (Game theory); Zero-sum (game theory); Zero sum; Zero-Sum Game; Zero-sum cost; Negative-sum; Zero-sum; Zero-Sum game; Zero–sum game; Non–zero-sum game; Non–zero sum game; Win-lose deal; Lose-win deal; 0 sum game; Zero sum deal; Zero-Sum; Nonzero-Sum Game
игра с нулевой суммой; игра, в которой ожидаемый выигрыш для всех её участников составит ноль.
summation         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol
сложение; суммирование
summation         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol

[sʌ'meiʃ(ə)n]

общая лексика

суммирование

суммация

подведение итога

суммировка

существительное

общая лексика

сложение

суммирование

совокупность

итог

подведение итога, суммирование

совокупность, итог

синоним

summing-up

summation symbol         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol

математика

знак суммы

algebraic sum         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol

общая лексика

алгебраическая сумма

finite sum         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol

математика

конечная сумма

finite summation         
  • The summation symbol
ADDITION OF A SEQUENCE OF NUMBERS
Sigma notation; Sums; Summation Number; Sum Of; Summation identities; Summation sign; Capital-sigma notation; Sumation; Capital sigma notation; Sum identities; ⅀; Summation (mathematics); Sum (mathematics); ⎲; ⎳; Mathematical sum; Algebraic sum; Sum symbol; Summation operator; Big sigma notation; Draft:Summation Formula List; Finite sum; Finite summation; Sum character; Summation symbol

математика

конечное суммирование

constant sum game         
  • Zero-sum three-person game
MATHEMATICAL REPRESENTATION OF A SITUATION IN WHICH EACH PARTICIPANT'S GAIN OR LOSS OF UTILITY IS EXACTLY BALANCED BY THE LOSSES OR GAINS OF THE UTILITY OF THE OTHER PARTICIPANTS
Non-zero-sum; Non-zero-sum games; Zero sum game; Zero sum gain; Zero-sum games; Non-zero-sum game; Zero Sum Game; Non-zero sum; Non-zero sum game; Constant sum game; Constant sum; Constant-sum; Fixed sum game; Conflict game; Non zero sum; Negative-sum game; Zero Sum; Zero-sum (Game theory); Zero-sum (game theory); Zero sum; Zero-Sum Game; Zero-sum cost; Negative-sum; Zero-sum; Zero-Sum game; Zero–sum game; Non–zero-sum game; Non–zero sum game; Win-lose deal; Lose-win deal; 0 sum game; Zero sum deal; Zero-Sum; Nonzero-Sum Game

общая лексика

т. игр.

игра с постоянной суммой

constant sum game         
  • Zero-sum three-person game
MATHEMATICAL REPRESENTATION OF A SITUATION IN WHICH EACH PARTICIPANT'S GAIN OR LOSS OF UTILITY IS EXACTLY BALANCED BY THE LOSSES OR GAINS OF THE UTILITY OF THE OTHER PARTICIPANTS
Non-zero-sum; Non-zero-sum games; Zero sum game; Zero sum gain; Zero-sum games; Non-zero-sum game; Zero Sum Game; Non-zero sum; Non-zero sum game; Constant sum game; Constant sum; Constant-sum; Fixed sum game; Conflict game; Non zero sum; Negative-sum game; Zero Sum; Zero-sum (Game theory); Zero-sum (game theory); Zero sum; Zero-Sum Game; Zero-sum cost; Negative-sum; Zero-sum; Zero-Sum game; Zero–sum game; Non–zero-sum game; Non–zero sum game; Win-lose deal; Lose-win deal; 0 sum game; Zero sum deal; Zero-Sum; Nonzero-Sum Game
игра с постоянной суммой

Определение

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Википедия

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.

Как переводится quadrature sum на Русский язык