На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
математика
квадратурная сумма
[sʌ'meiʃ(ə)n]
общая лексика
суммирование
суммация
подведение итога
суммировка
существительное
общая лексика
сложение
суммирование
совокупность
итог
подведение итога, суммирование
совокупность, итог
синоним
математика
знак суммы
общая лексика
алгебраическая сумма
математика
конечная сумма
математика
конечное суммирование
общая лексика
т. игр.
игра с постоянной суммой
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as
which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].
The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as
where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,
Common weights include (Chebyshev–Gauss) and . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).
It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.